Tag Archives: hVoS

Transgenic mouse lines expressing hybrid voltage sensors

Genetically encoded optical voltage sensors expand the optogenetic toolkit to enable the imaging of electrical activity from genetically defined populations of neurons. In a recent paper that appeared in the Journal of Neurophysiology, Wang et al reported the imaging of electrical activity in hippocampal slices from transgenic mice expressing hybrid voltage sensors (hVoS). hVoS probes are membrane targeted fluorescent proteins that have been optimized for a FRET interaction with dipicrylamine, a lipophilic molecule that partitions into lipid bilayers. A change in voltage alters the FRET interaction between the fluorescent protein and dipicrylamine to produce an optical signal that can be imaged.

Among the various genetically encoded voltage sensors currently under development in various labs, hVOS probes have a signal amplitude comparable to other probes (20-30% for 100 mV), but a very rapid response time (~0.5 msec). Thus, these probes are rapid enough to detect action potentials. Wang et al generated transgenic mice with two different high-performance hVoS probes under control of a neuron-specific thy-1 promoter. Hippocampal slices from these animals present distinct spatial patterns of expression, and electrical stimulation evoked fluorescence changes as high as 3%.

In some instances, clear responses were recorded in a single trial without averaging. One … Continue reading

Posted in Journal Club | Tagged , , , , | Leave a comment