Monthly Archives: September 2012

Transgenic mouse lines expressing hybrid voltage sensors

Genetically encoded optical voltage sensors expand the optogenetic toolkit to enable the imaging of electrical activity from genetically defined populations of neurons. In a recent paper that appeared in the Journal of Neurophysiology, Wang et al reported the imaging of electrical activity in hippocampal slices from transgenic mice expressing hybrid voltage sensors (hVoS). hVoS probes are membrane targeted fluorescent proteins that have been optimized for a FRET interaction with dipicrylamine, a lipophilic molecule that partitions into lipid bilayers. A change in voltage alters the FRET interaction between the fluorescent protein and dipicrylamine to produce an optical signal that can be imaged.

Among the various genetically encoded voltage sensors currently under development in various labs, hVOS probes have a signal amplitude comparable to other probes (20-30% for 100 mV), but a very rapid response time (~0.5 msec). Thus, these probes are rapid enough to detect action potentials. Wang et al generated transgenic mice with two different high-performance hVoS probes under control of a neuron-specific thy-1 promoter. Hippocampal slices from these animals present distinct spatial patterns of expression, and electrical stimulation evoked fluorescence changes as high as 3%.

In some instances, clear responses were recorded in a single trial without averaging. One … Continue reading

Posted in Journal Club | Tagged , , , , | Leave a comment

KENGE-tet System for Expanding the Repertoire of Optogenetically Targeted Cells

Optogenetics has proven to be a powerful tool capable of manipulating the activity of a specific population of cells in a complex multicellular organism. This approach is enthusiastically pursued in recent neuroscience field and the causal relationship between neural activity and behavior is finally starting to become unveiled. However, most studies utilize virus mediated gene transfer for the induction of light-sensitive proteins, such as channelrhodopsin-2 (ChR2), and such method inevitably introduces surgical injuries and variability of expression between trials. Therefore, transgenic approach has long been sought, however, satisfying the demands of the specificity as well as the abundance of expression were difficult.

In a recent paper published in the Cell Reports, Tanaka and Matsui and their colleagues at the National Institute for Physiological Sciences (Okazaki, Japan) established Knockin-mediated ENhanced Gene Expression by improved tetracycline-controlled gene induction system (KENGE-tet). The authors found that high levels of tTA-mediated transcription can be achieved by knocking in tetO-ChR2 cassette into a locus at a housekeeping gene, beta-actin. The authors crossed this tetO-ChR2 knockin mouse with 7 different tTA lines and achieved ChR2 expression in specific cell-types including sub-populations of neurons, astrocytes, oligodendrocytes, and microglial cells. In all cases, the level of ChR2 expression was … Continue reading

Posted in Journal Club, News | Tagged , , , , | Leave a comment