Author Archives: jsiegle@mit.edu

Combining up to 16 individually adjustable electrodes with optical stimulation in mice

Simultaneously recording and perturbing neural circuits with millisecond-scale temporal precision is a cornerstone of optogenetics research, but the methods for doing so are not always easily accessible. A variety of labs have come up with ad hoc ways to incorpoate fiber optic cables into existing multielectrode implant designs. Very few of these solutions have been documented or published, even though this is becoming an increasingly popular technique. Fortunately, the Moore Lab at Brown University recently published a manuscript on their “flexDrive,” a lightweight implant that can hold multiple fiber optic cables and 16 electrodes (Voigts et al., 2013).

The basic concept is similar to the designs from Matt Wilson’s lab involving a ring of electrodes, each driven by its own screw (Kloosterman et al., 2009). But it introduces a novel spring-based drive mechanism that significantly reduces both the weight of the implant and the time it takes to build. In contrast to previously published designs (Anikeeva et al., 2011), each of the electrodes on the flexDrive can be moved independently—a feature that is essential for maximizing the number of well-isolated single units that can be recorded.

The authors have put a lot of effort into making their designs as accessible … Continue reading

Posted in Journal Club | Tagged , , | Leave a comment